
On the general Term of

hypergeometric Series *

Leonhard Euler

§1 Here, following Wallis I call those series hypergeometric, whose general
terms are products the factors constitute an arithmetic progression; a well-
known example of such a series is the following

1, 2, 6, 24, 120, 720 etc.,

whose term corresponding to the index n is 1 · 2 · 3 · 4 · · · n. Therefore, in ge-
neral starting from an arbitrary arithmetic progression such a hypergeometric
series will be formed

a, a(a + b), a(a + b)(a + 2b), a(a + b)(a + 2b)(a + 3b) etc.,

whose general term corresponding to the index n, which consists of n factors,
will therefore be

a(a + b)(a + 2b)(a + 3b) · · · (a + (n− 1)b);

hence, as often as n was a positive integer number, the term corresponding
the index will most easily be assigned, so that, if the exponent n expresses
the abscissa of a certain curved line, its ordinates are expressed by the terms
of the series itself; there is completely no doubt that also certain ordinates

*Original title: “ De termino generali serierum hypergeometricarum“, first published in
„Nova Acta Academiae Scientarum Imperialis Petropolitinae, 7, 1793, pp. 42-82 “, reprinted in in
„Opera Omnia: Series 1, Volume 16.1, pp. 139 - 162 “, Eneström-Number E652, translated by:
Alexander Aycock for „Euler-Kreis Mainz“
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correspond to abscissas expressed by fractional or even surdic1 numbers; their
value can not be defined from this product by any means, but in order to
define them an expression formed from the quantities a, b and n of such a
kind is required, which always exhibits determined values, no matter whether
n was either a fractional or even a surdic number.

§2 I have already investigated hypergeometric series of this kind several
times, where, considering the interpolation of Wallis’s series 1, 2, 6, 24, 120
etc., I mainly discovered that the term corresponding to the indefinite index n
can be expressed this way

11−n · 2n

1 + n
· 21−n · 3n

2 + n
· 31−n · 4n

3 + n
· 41−n · 5n

4 + n
· 51−n · 6n

5 + n
· etc.,

which expression certainly is an infinite product, but nevertheless always
yields a determined value, whatever value is attributed to the index n. In like
manner for the general series mentioned above I showed that the general term
or the one corresponding to the indefinite index n can be represented by the
following infinite product

ana1−n(a + b)n

a + nb
· (a + b)1−n(a + 2b)n

a + (n + 1)b
· (a + 2b)1−n(a + 3b)n

a + (n + 2)b
· etc.

But the reasoning, which at that time had led me to these formulas, was
restricted to the theory of interpolations and was not explained so well
that it could be understood completely; therefore, I decided to repeat this
investigation, starting from the nature of these series , and explain it clearly.

§3 Therefore, I will begin with Wallis’s series, since the power of the method
can be seen a lot more clearly in a special case, than if I immediately wanted to
apply it to a general series. Therefore, because the general term corresponding
to the index n can be considered as a function of the index n, I, as it is
customary now, will express it by ∆ : n, where ∆ does not denote a quantity
but a function. Therefore, hence, as often as n was a positive integer, it will be

∆ : n = 1 · 2 · 3 · 4 · · · n,

1By this Euler means expressions involving roots.
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whence it is understood that for the following terms it will be

∆ : (n + 1) = (n + 1)∆ : n

∆ : (n + 2) = (n + 1)(n + 2)∆ : n

∆ : (n + 3) = (n + 1)(n + 2)(n + 3)∆ : n

etc.

And since the nature of the series itself is contained in this continued accession
of new factors, these last formulas must also be true, whatever values are
attributed to the index n. So, because ∆ : 1

2 denotes the term corresponding to
the index 1

2 , which is known to be expressed by the quadrature of the circle,
hence the following ones can be assigned this way

∆ : 1 +
1
2
=

3
2

∆ :
1
2

, ∆ : 2
1
2
=

3
2
· 5

2
· ∆ :

1
2

, ∆ : 3
1
2
=

3
2
· 5

2
· 7

2
· ∆ :

1
2

etc.

And likewise for all other numbers n, even though it might not be possible to
express the value ∆ : n by known quantities by any means.

§4 Therefore, having constituted the foundation, on which the whole nature
of these series is based, it is necessary set another principle stating that a series
continued to infinity of this kind is finally confounded with a geometric series;
since then any further factors can be considered as equal. So, if i denotes an
infinite number and so ∆ : i denotes the corresponding term of the series, the
terms following it can be exhibited this way

∆ : (i + 1) = (i + 1)∆ : i = i∆ : i

∆ : (i + 2) = (i + 1)(i + 2)∆ : i = i · i∆ : i

∆ : (i + 3) = (i + 1)(i + 2)(i + 3)∆ : i = i3∆ : i

etc.

and so one will be able to set in general

∆ : (i + n) = in∆ : i.

This at first sight might seem paradoxical, since the formula ∆ : i already has
an infinitely large value; but if only the ratio of these two terms is in question,
it will certainly be possible to write i instead of i + 1 and i + 2. Yes, it will
even vice versa be possible to write i + 1 and i + 2 or in general i + α instead
of i, while α denotes an arbitrary finite number, whence one will be able to
set in general

∆ : (i + n) = (i + α)n∆ : i.
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§5 Therefore, since it is in general

∆ : i = 1 · 2 · 3 · 4 · · · i,

if i denotes an infinite number, even though it might be fractional, this expres-
sion can nevertheless be considered to be determined; but then, as we saw, it
will be

∆ : (i + n) = (i + α)n∆ : i.

But in like manner let us equally proceed to infinity starting from the formula
∆ : n, and because it is

∆ : (n + 1) = (n + 1)∆ : n

and
∆ : (n + 2) = (n + 1)(n + 2)∆ : n

etc.,

it will be

∆ : (n + i) = (n + 1)(n + 2)(n + 3) · · · (n + i)∆ : n;

here the number of factors, by which the formula ∆ : n is multiplied, is i; but
on the other hand the expression given above for ∆ : (i + n), if the original
value is written instead of ∆ : i, will be

∆ : (i + n) = 1 · 2 · 3 · 4 · · · i(i + α)n,

where the number of factors, by which the formula (i + α)n is multiplied,
equally is = i.

§6 Therefore, since it must obviously be

∆ : (n + i) = ∆ : (i + n),

if the one of the found formulas is divided by the other and the fractions,
since the number of factors is the same on both sides, are expressed separately,
the quotient must certainly be equal 1; for, it will, of course, be

1 =
1

n + 1
· 2

n + 2
· 3

n + 3
· 4

n + 4
· · · i

n + i
· (i + α)n

∆ : n
.
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Therefore, using this equation it is possible to derive the true value of the
formula ∆ : n, which must hence always hold, no matter whether the index n
is an integer number or not; of course, we will have

∆ : n =
1

n + 1
· 2

n + 2
· 3

n + 3
· 4

n + 4
· · · i

n + i
· (i + α)n;

it will be helpful to have shown, how this expression solves the problem, in
several cases, in which we assume some small integer numbers for n.

1. Therefore, let it be n = 1 and hence it will be

∆ : 1 =
1
2
· 2

3
· 3

4
· 4

5
· · · i

1 + i
· (i + α),

where having deleted the terms cancelling each other it will result

∆ : 1 =
1

1 + i
· (i + α),

where it obviously is i+α
i+1 = 1 because of the infinite number i, whatever

value is assumed for α.

2. Let n = 2 and our expression will give

∆ : 2 =
1
3
· 2

4
· 3

5
· 4

6
· 5

7
· 6

8
· · · i

2 + i
· (i + α)2,

where having deleted the terms cancelling each other in the numerator
only the first two, but in the denominator only the last two are left, so
that it results

∆ : 2 =
1 · 2 · (i + α)2

(1 + i)(2 + i)
,

where it obviously is
(i + α)2

(1 + i)(2 + i)
= 1

such that it is ∆ : 2 = 1 · 2.

3. Let it be n = 3 and our expression will give

∆ : 3 =
1
4
· 2

5
· 3

6
· 4

7
· 5

8
· 6

9
· 7

10
· · · i

3 + i
· (i + α)3,
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where in the denominator only the first three, but in the denominator
only the last three factors are left, so that it is

∆ : 3 =
1 · 2 · 3 · (i + α)3

(1 + i)(2 + i)(3 + i)

and hence
∆ : 3 = 1 · 2 · 3.

Therefore, this way the truth of the expression can be demonstrated for all
integer numbers assumed for n, and hence at the same time the reason is
understood, why that arbitrary number α can be introduced, since here only
the ratio of the two infinite expressions is considered.

§7 But if we would not assume integer numbers for n, from this form
completely nothing could be learned for the value ∆ : n, since so in the
numerator as in the denominator innumerable factors would remain; and
innumerable of them would even be infinite. Therefore, in order to avoid
this inconvenience, although i actually denotes an infinite number, let us
nevertheless instead of it successively write the natural numbers 1, 2, 3, 4 etc.
and we will obtain the following formulas

I. ∆ : n =
1

n + 1
(1 + α)n

II. ∆ : n =
1

n + 1
· 2

n + 2
(2 + α)n

III. ∆ : n =
1

n + 1
· 2

n + 2
· 3

n + 3
(3 + α)n

IV. ∆ : n =
1

n + 1
· 2

n + 2
· 3

n + 3
· 4

n + 4
(4 + α)n

etc.,

where it is evident that these formulas most get continuously closer to the
truth, the further they are continued, since having continued them to infinity,
one has finally to get to the true value of ∆ : n.

§8 Since every arbitrary of these forms involves the preceding either com-
pletely or partly, let us divide each one by its preceding one; and we will
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obtain

II
I

=
2

n + 2
· (2 + α)n

(1 + α)n

III
II

=
3

n + 3
· (3 + α)n

(2 + α)n

IV
III

=
4

n + 4
· (4 + α)n

(3 + α)n

etc.

Therefore, this way let us include the preceding values into the following, and
because I is

∆ : n =
1

n + 1
(1 + α)n,

for the number II we will have

∆ : n =
1

n + 1
(1 + α)n · 2

n + 2
· (2 + α)n

(1 + α)n .

Form this further for number III this relation results

∆ : n =
1

n + 1
(1 + α)n · 2

n + 2
· (2 + α)n

(1 + α)n ·
3

n + 3
· (3 + α)n

(2 + α)n .

And it like manner for the number IV it will be

∆ : n =
1

n + 1
(1 + α)n · 2

n + 2
· (2 + α)n

(1 + α)n ·
3

n + 3
· (3 + α)n

(2 + α)n ·
4

n + 4
· (4 + α)n

(3 + α)n .

§9 Therefore, if we continue these expressions to infinity, we will finally
obtain the true expression itself; but although the structure of the first terms
recedes from the following ones, it will easily be possible to render them uni-
form, by dividing by αn, of course, but then multiplying the whole expression
by αn; and so we will get to the following infinite product expressing the true
value of the function ∆ : n; for, it will be

∆ : n = αn 1
n + 1

(
1 + α

α

)n

· 2
n + 2

(
2 + α

1 + α

)n

· 3
n + 3

(
3 + α

2 + α

)n

· 4
n + 4

(
4 + α

3 + α

)n

· etc.,

which expression therefore obviously denotes a determined value, whate-
ver number, integer or fractional, is assumed for n, since these factors get
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continuously closer 1; this will be seen clearly considering the form of the
infinitesimal factor, which is

i
n + i

·
(

i + α

i− 1 + α

)n

,

whose value because of i = ∞ manifestly is = 1, since with respect to i the
added n, α and α− 1 are negligible.

§10 This form is already identical to the one we gave at the beginning, which,
if the powers of the exponent n are combined, is reduced to this form

∆ : n =
1

n + 1

(
2
1

)n

· 2
n + 2

(
3
2

)n

· 3
n + 3

(
4
3

)n

· etc.;

the one just found also reduces to this by taking α = 1. Hence it is understood
that the formula we now found is a lot more general, since it is possible to
assume arbitrary other numbers for α. Nevertheless, there is no doubt that
both formulas exhibit the same values for all values of n. This is at least clear
considering the expansions done above for the integer numbers, while, for the
sake of an example, it is ∆ : 3 = 1 · 2 · 3, whatever is taken for α.

§11 But that the quantity of the letter α does not affect the value of n at all,
can be understood by considering that all powers of α up to the infinitesimal
one cancel each other; but then it can also be shown this way, if another value
β is written instead of α, that it will equally be

∆ : n = βn 1
n + 1

(
1 + β

β

)n

· 2
n + 2

(
2 + β

1 + β

)n

· 3
n + 3

(
3 + β

2 + β

)n

· etc.

The quotient resulting from the division of these two expressions is

1 =

(
α

β

)n [ (α + 1)β

α(β + 1)

]n

·
[
(α + 2)(β + 1)
(α + 1)(β + 2)

]n

· etc.,

whence, if the root of the power n is extracted, this expression results

1 =
α

β
· (α + 1)β

α(β + 1)
· (α + 2)(β + 1)
(α + 1)(β + 2)

· (α + 3)(β + 2)
(α + 2)(β + 3)

· etc.,

which fraction, if continued to infinity, is obviously reduced to α+i
β+i , whose

value because of the infinite i certainly is 1; and so it is demonstrated that these
two values of ∆ : n are equal to each other. But the same proof will also hold
for the following expansion, where we will contemplate all hypergeometric
series in general.
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EXPLANATION OF THE ANALYSIS FOR THE GENERAL

HYPERGEOMETRIC SERIES

§13 Now in like manner let us consider this general hypergeometric series

a, a(a + b), a(a + b)(a + 2b), a(a + b)(a + 2b)(a + 3b), etc.,

whose term corresponding to the index n and composed of n factors, of course,
we want to put

a(a + b)(a + 2b)(a + 3b) · · · (a + (n− 1)b) = ∆ : n,

since because of the constant letters a and b one will be able to consider it as a
function of the variable n. Therefore, hence by definition it will be

∆ : (n + 1) = ∆ : n(a + bn)

∆ : (n + 2) = ∆ : n(a + bn)(a + (n + 1)b)

∆ : (n + 3) = ∆ : n(a + bn)(a + (n + 1)b)(a + (n + 2)b)

etc.;

and hence, if i denotes an infinite number, it will be

∆ : (n + i) = ∆ : n(a + nb)(a + (n + 1)b) · · · (a + (n + i− 1)b).

§14 But from the nature of the form itself it is

∆ : i = a(a + b)(a + 2b) · · · (a + (i− 1)b),

whence for the following ones it will be

∆ : (i + 1) = ∆ : i(a + bi)

∆ : (i + 2) = ∆ : i(a + bi)(a + (i + 1)b)

∆ : (i + 3) = ∆ : i(a + bi)(a + (i + 1)b)(a + (i + 2)b)

etc.,

where the new factors can be considered as equal to each other, so that it is

∆ : (i + 3) = ∆ : i(a + ib)3,
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whence for the indefinite number n we will have

∆ : (i + n) = ∆ : i(a + ib)n

and hence, because in like manner we could have taken a + b + ib or even
a + 2b + ib instead of a + ib, we will be able to set in general

∆ : (i + n) = ∆ : i(α + ib)n,

while α denotes an arbitrary finite quantity vanishing with respect to ib.

§15 Therefore, since we obtained two expressions for the same function
∆ : (i + n), comparing them we will hence also find

∆ : n =
1 : i(α + ib)n

(a + nb)(a + (n + 1)b) · · · (a + (n + i− 1)b)
,

where in the denominator we will have i factors. Therefore, let us substitute
the product itself instead of ∆ : i again; and the product equally consists of i
factors, whence the following value will result:

∆ : n =
a

a + nb
· a + b

a + (n + 1)b
· a + 2b

a + (n + 2)b
· · · a + (i− 1)b

a + (n + i− 1)b
(α + ib)n

and this is the true value of ∆ : n, as long as for i an infinitely large number is
taken no matter, whether the index n is an integer or fractional or even surdic
number.

§16 From these things it is understood, if we assumed finite values instead
of i, that the error of this expression will become the smaller, the greater the
number i was taken; in order to see this approximation to the truth more
clearly, let us successively write the numbers 1, 2, 3, 4 etc. instead of i and
denote the expressions resulting from this by the signs I., II., III. etc. and it
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will be

I.
a

a + nb
(α + b)n

II.
a

a + nb
· a + b

a + (n + 1)b
· (α + 2b)n

III.
a

a + nb
· a + b

a + (n + 1)b
· a + 2b

a + (n + 2)b
· (α + 3b)n

IV.
a

a + nb
· a + b

a + (n + 1)b
· a + 2b

a + (n + 2)b
· a + 3b

a + (n + 3)b
(α + 4b)n

etc.

But hence it is further calculated

II
I

=
a + b

a + (n + 1)b
·
(

α + 2b
α + b

)n

III
II

=
a + 2b

a + (n + 2)b
·
(

α + 3b
α + 2b

)n

IV
III

=
a + 3b

a + (n + 3)b
·
(

α + 4b
α + 3b

)n

etc.

Therefore, if we proceed this way to infinity, we will get to the true value of
∆ : n, which will consist of the following factors to be multiplied by each other

∆ : n = αn a
a + nb

(
α + b

α

)n

· a + b
a + (n + 1)b

(
α + 2b
α + b

)n

· a + 2b
a + (n + 2)b

(
α + 3b
α + 2b

)n

· a + 3b
a + (n + 3)b

(
α + 4b
α + 3b

)n

· etc.

§17 Therefore, this way we obtained an infinite product for ∆ : n, whose
single factors proceed regularly; it is especially helpful to note that the single
complete factors or terms come continuously closer to the truth, since the
infinitesimal term will be

a + (i− 1)b
a + (n + i− 1)b

(
α + ib

α + (i− 1)b

)n

,

which expression, having cancelled the parts, which vanish with respect to
infinity, obviously reduces to 1. But then we already observed that the quantity
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α is completely arbitrary and the value ∆ : n is not affected by it, whence in
each case it will be possible to assume it in such a way that the calculation
becomes more convenient; therefore, it will definitely worth one’s while to
have observed that for series of this kind the general terms can be represented
in much more universal form than the one we mentioned at the beginning,
which results from the present one by putting α = a.

APPLICATION OF THIS GENERAL FORM TO THE CASE

n = 1
2

§18 It is easily understood that the infinite expression found for ∆ : n can be
of exceptional use, whenever the terms corresponding to fractional indices of
the series are in question, since the terms corresponding to integer numbers
are known per se. Therefore, let us first find the term corresponding to the
index n = 1

2 of our series; this term will therefore expressed by ∆ : 1
2 , so that

it is

∆ :
1
2
=
√

α
a

a + 1
2 b

√
α + b

α
· a + b

a + 3
2 b

√
α + 2b
α + b

· a + 2b
a + 5

2 b

√
α + 3b
α + 2b

etc. to infinity

But having found this value at the same time all intermediate terms become
known; for, it will be

∆ : 1
1
2
= ∆ :

1
2

(
a +

1
2

b
)

,

which terms fall in the middle between the first a and the second a(a + b); in
like manner it will be

∆ : 2
1
2
= ∆ :

1
2
(a +

1
2

b)(a +
3
2

b),

which falls in the middle between the second and the third. But furthermore,
it will be

∆ : 3
1
2
= ∆ :

1
2

(
a +

1
2

b
)(

a +
3
2

b
)(

a +
5
2

b
)

∆ : 4
1
2
= ∆ :

1
2

(
a +

1
2

b
)(

a +
3
2

b
)(

a +
5
2

b
)(

a +
7
2

b
)

etc.
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Now here it is usually in question, how these infinite products are most
conveniently reduced to finite expressions, since those infinite products can
only serve to find the value of ∆ : 1

2 approximately. But usually especially
the species of transcendental quantities, to which this value of ∆ : 1

2 is to be
referred, are in question; this question can be answered applying the results
on infinite products of this kind I explained on various occasions2, without
any difficulty. But it is especially necessary that the factors containing roots are
thrown out of the calculation, which is achieved by squaring the expression,
whence we will have(

∆ :
1
2

)2

= α
aa

(a + 1
2 b)2

· α + b
α

(
a + b

a + 3
2 b

)2
α + 2b
α + b

(
a + 2b
a + 5

2 b

)2
α + 3b
α + 2b

· etc.

§19 But since here the letter α is arbitrary, let us assume it in such a way that
the number of factors in the single terms is decreased, what will achieved by
taking α = a; for, then it will be(

∆ :
1
2

)2

= a
a(a + b)

(a + 1
2 b)(a + 1

2 b)
· (a + b)(a + 2b)
(a + 3

2 b)(a + 3
2 b)
· (a + 2b)(a + 3b)
(a + 5

2 b)(a + 5
2 b)
· (a + 3b)(a + 4b)
(a + 7

2 b)(a + 7
2 b)
· etc.

But in order to get rid of the partial fractions in the denominators, let us
duplicate the single factors so of the numerators as of the denominators that
this form results(

∆ :
1
2

)2

= a
2a(2a + 2b)

(2a + b)(2a + b)
· (2a + 2b)(2a + 4b)
(2a + 3b)(2a + 3b)

· (2a + 4b)(2a + 6b)
(2a + 5b)(2a + 5b)

· etc.,

where the single factors of each term obtain an augmentation = 2b in the
following term. But now it is easy to reduce this form to finite expressions
applying the methods explained at various places3.

§20 For, if by the letters P and Q these integral formulas are denoted

P =
∫ xp−1∂x

(1− xn)1−m
n

and Q =
∫ xq−1∂x

(1− xn)1−m
n

,

2Euler refers to his papers “De productis ex infinitis factoribus ortis“ and “De expressione
integralium per factores“. These are the papers E122 and E254 in the Eneström-Index,
respectively.

3Euler refers to his papers E122 and E254 again.
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which integrals are to be understood to be extended from x = 0 to x = 1, I
showed that the fraction P

Q can be converted into the following infinite product

P
Q

=
q(m + p)
p(m + q)

· (q + n)(m + p + n)
(p + n)(m + q + n)

· (q + 2n)(m + p + 2n)
(p + 2n)(m + q + 2n)

· etc.,

where the single factors of each term continuously grow by a quantity =
n; hence it is immediately plain in order to reduce this form to the one
propounded to us, that one has to take n = 2b; but then it suffices to equate
the first terms on both sides, of course

q(m + p)
p(m + q)

=
2a(2a + 2b)

(2a + b)(2a + b)
;

this gives q = 2a and p = 2a + b, but then m = b, having substituted the-
se values the fraction P

Q multiplied by a will express the value
(
∆ : 1

2

)2
in

question.

§21 But after the substitution just found because of m
n = 1

2 it is

P =
∫ x2a+b−1∂x√

1− x2b
and Q =

∫ x2a−1∂x√
1− x2b

,

which integrals are always to be extended from x = 0 to x = 1; having done
this, it will be (

∆ :
1
2

)2

= a
P
Q

,

and hence having extracted the root it will be

∆ :
1
2
=

√
a
∫ x2a+b−1∂x√

1− x2b
:
∫ x2a−1∂x√

1− x2b
;

using this formula it will be plain immediately in each case, on which species
of transcendental quantities the value in question ∆ : 1

2 depends, which will
be worth one’s while to illustrate it by some examples.

EXAMPLE 1

§22 Put a = 1 and b = 1 that Wallis’s hypergeometric series itself arises

1, 1 · 2, 1 · 2 · 3, 1 · 2 · 3 · 4, 1 · 2 · 3 · 4 · 5 etc.,
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whose term corresponding to the index 1
2 , denoted by ∆ : 1

2 , is in question.
Therefore, by means of the found integral formula it will be

∆ :
1
2
=

√∫ xx∂x√
1− xx

:
∫ x∂x√

1− xx
.

But it is known, having extended the integrals from x = 0 to x = 1, to be∫ x∂x√
1− xx

= 1,

but then ∫ xx∂x√
1− xx

=
1
2

∫
∂x√

1− xx
=

π

4
,

whence it is plain that it will be

∆ :
1
2
=

√
π

4
=

1
2
√

π;

but the remaining intermediate terms of this series will be

∆ : 1
1
2
=

1
2
· 3

2
√

π

∆ : 2
1
2
=

1
2
· 3

2
· 5

2
√

π

∆ : 3
1
2
=

1
2
· 3

2
· 5

2
· 7

2
√

π

etc.,

whence it is obvious that the term corresponding to the index − 1
2 will be

∆ : −1
2
=
√

π,

as it was already observed by Wallis.

EXAMPLE 2

§23 Take a = 1 and b = 2, whence this hypergeometric progression arises

1, 1 · 3, 1 · 3 · 5, 1 · 3 · 5 · 7, 1 · 3 · 5 · 7 · 9, etc.

15



Hence again term corresponding to the index 1
2 is in question; therefore, it

will be

∆ :
1
2
=

√∫ x3∂x√
1− x4

:
∫ x∂x√

1− x4
.

If we now write y instead of xx here, we will have∫ x3∂x√
1− x4

=
1
2

∫ y∂y√
1− yy

,

whose value extended from y = 0 to y = 1 is = 1
2 ; the other formula on the

other hand ∫ x∂x√
1− x4

goes over into this one

1
2

∫
∂y√

1− yy
=

1
2
· π

2
.

Having substituted these values it will be

∆ :
1
2
=

√
2
π

,

which value also depends on the quadrature of the circle. But then the follo-
wing intermediate terms will be

∆ : 1
1
2
= 2

√
2
π

,

∆ : 2
1
2
= 2 · 4

√
2
π

,

∆ : 3
1
2
= 2 · 4 · 6

√
2
π

,

∆ : 4
1
2
= 2 · 4 · 6 · 8

√
2
π

etc.;

and hence it is plain that the term corresponding to the index − 1
2 , ∆ : − 1

2 , will
be infinite.

16



APPLICATION OF THE EXPRESSION TO THE TERM

CORRESPONDING INDEX IS = 1
3 OF THIS SERIES

§24 Therefore, let us put n = 1
3 here and the found general formula will

yield

∆ :
1
3
= 3
√

α · a
a + 1

3 b
3

√
α + b

α
· a + b

a + 4
3 b

3

√
α + 2b
α + b

· a + 2b
a + 7

3 b
3

√
α + 3b
α + 2b

· etc..

Therefore, by taking cubes it will be(
∆ :

1
3

)3

= α · a3

(a + 1
3 b)3

· α + b
α
· (a + b)3

(a + 4
3 b)3

· α + 2b
α + b

· etc.

Now to get rid of the fractions let us put b = 3c and it will be(
∆ :

1
3

)3

= α · a3

(a + c)3 ·
α + 3c

α
· (a + 3c)3

(a + 4c)3 ·
α + 6c
α + 3c

· (a + 6c)3

(a + 7c)3 ·
α + 9c
α + 6c

· etc.,

where the factors are augmented by 3c in each following term. Therefore, if
we take α = a, we will get to the following simpler formula:(

∆ :
1
3

)3

= a · aa(a + 3c)
(a + c)(a + c)(a + c)

· (a + 3c)(a + 3c)(a + 6c)
(a + 4c)(a + 4c)(a + 4c)

· (a + 6c)(a + 6c)(a + 9c)
(a + 7c)(a + 7c)(a + 7c)

· etc.

§25 Since here in each term three factors occur, it is not immediately possible
to compare it to the form exhibited for P

Q . But here one has to use the two

fractions P
Q and P′

Q′ , whose product is to be equated to the found form; and
since our first term is

aa(a + 3c)
(a + c)(a + c)(a + c)

,

but two terms resulting from that multiplication produce four factors, in the
single terms so above as below let us add the new factor f that they can be
split into two parts, which we want to put

aa
(a + c) f

· f (a + 3c)
(a + c)(a + c)

17



for the first, and now let us compare both parts to

q(m + p)
p(m + q)

.

But for the first part let us set

q = a and p = f

and it will be
m + p = m + f = a

and
m + q = m + a = a + c,

whence one concludes m = c and f = a− c; but then by proceeding to the
following terms it will be n = 3c.

§26 If we now resolve the single members of our expression into two parts,
having introduced the new letter f = a− c, which will equally obtain the
augmentation 3c in the following terms, let us consider all first parts separately,
whose product will become equal to the fraction P

Q , and using the already
found values it will be

P =
∫ xa−c−1∂x

3
√
(1− x3c)2

and Q =
∫ xa−1∂x

3
√
(1− x3c)2

.

§27 But for the second parts let us use the fraction P′
Q′ , while we will also

denote the small letters p, q and m together with the prime. Therefore, hence
our comparison will give

q′(m′ + p′)
p′(m′ + q′)

=
f (a + 3c)

(a + c)(a + c)
;

therefore, let us assume

q′ = f = a− c and p′ = a + c;

but then it will be
m′ + p′ = m′ + a + c = a + 3c

18



and
m′ + q′ = m′ + a− c = a + c,

but in each of both it is m′ = 2c, but then is still n = 3c as before; hence these
new formulas will be determined this way

P′ =
∫ xa+c−1∂x

3
√

1− x3c
and Q′ =

∫ xa−c−1∂x
3
√

1− x3c

§28 Therefore, since the fraction P
Q expresses the product of all first parts,

but P′
Q′ the product of all second parts, we will have(

∆ :
1
3

)3

= a
P
Q
· P′

Q′

and hence

∆ :
1
3
= 3

√
aPP′

QQ′
;

therefore, four integral formulas will be necessary, among which in general no
relation is seen, to define this interpolated term ∆ : 1

3 ; for, after the substitution
it will be

∆ :
1
3
= 3

√
a
∫ xa−c−1∂x

3
√
(1− x3c)2

·
∫ xa+c−1∂x

3
√
(1− x3c)

: 3

√∫ xa−1∂x
3
√
(1− x3c)2

·
∫ xa−c−1∂x

3
√
(q− x3c)

,

where one has to recall that here 3c was written instead of the letter b so that
it is c = 1

3 b. I think it will suffice to have illustrated this expression by the
example of Wallis’s series.

EXAMPLE

§29 Therefore, let a = 1 and b = 1 and hence c = 1
3 ; and the four integral

formulas will be

P =
∫ x−

1
3 ∂x

3
√
(1− x)2

and Q =
∫

∂x
3
√
(1− x)2

P′ =
∫ x

1
3 ∂x

3
√

1− x
and Q′ =

∫ x−
1
3 ∂x

3
√

1− x
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in order to free these formulas from fractional exponents, set x = y3 and it
will be

P = 3
∫ y∂y

3
√
(1− y3)2

and Q = 3
∫ yy∂y

3
√
(1− y3)2

P′ = 3
∫ y3∂y

3
√

1− y3
and Q′ = 3

∫ y∂y
3
√

1− y3
;

using these values it is

∆ :
1
3
= 3

√
aPP′

QQ′
,

where it is to be noted that it is∫ y3∂y
3
√

1− y3
=

1
3

∫
∂y

3
√

1− y3
.

§30 Now let us expand these formulas more accurately; and at first one can
reduce the formula ∫

∂y
3
√

1− y3

to the circle. For, having put

y
3
√

1− y3
= z

our formula becomes z∂y
y ; but then it will be

y3 =
z3

1 + z3 and 3 log y = 3 log z− log (1 + z3)

and hence
∂y
y

=
∂z
z
− zz∂z

1 + z3 =
∂z

z(1 + z3)
,

and so our formula will become

=
∫

∂z
1 + z3 ,

whose integral from y = 0 to y = 1, this means from z = 0 to z = ∞, is

π

3 sin π
3
=

2π

3
√

3
,
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and so it will be P′ = 2π
3
√

3
.

But for P the formula ∫ y∂y
3
√
(1− y3)2

by means of the same substitution

y
3
√

1− y3
= z

is reduced to this one ∫ zz∂y
y

=
∫ z∂z

1 + z3 ,

whose integral is
π

3 sin 2π
3

=
2π

3
√

3
,

whence it is P = 2π√
3
.

Further, for Q it is ∫ yy∂y
3
√
(1− y3)2

= 1− 3
√

1− y3,

whence having put y = 1 it will be Q = 3.

Finally, the formula

Q′ = 3
∫ y∂y

3
√

1− y3

does not admit it by any means to be reduced to known quantities, but
involves a singular quadrature. Using these formulas one calculates

∆ :
1
3
= 3

√√√√ 4ππ

81
∫ y∂y

3
√

1−y3

;

and from this value the following are deduced:

∆ : 1
1
3
=

4
3

∆ :
1
3

∆ : 2
1
3
=

4
3
· 7

3
∆ :

1
3

∆ : 3
1
3
=

4
3
· 7

3
· 10

3
∆ :

1
3

etc.
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But hence it is easily understood, how one has to proceed in the investigation,
if other fractions are assumed for n.

CONCLUSION

§31 As we here for the series

a, a(a + b), a(a + b)(a + 2b), a(a + b)(a + 2b)(a + 3b), etc.

found the term corresponding to the index n, ∆ : n, expressed in such a way
that it is

∆ : n = αn · a
a + nb

(
α + b

α

)n

· a + b
a + (n + 1)b

(
α + 2b
α + b

)n

· etc.,

if we assume an arbitrary other number c instead of a that the series is

c, c(c + b), c(c + b)(c + 2b), c(c + b)(c + 2b)(c + 3b), etc.,

and we denote the term corresponding to the number c by Γ : n, then it will
in like manner be

Γ : n = αn · c
c + nb

(
α + b

α

)n

· c + b
c + (n + 1)b

(
α + 2b
α + b

)n

· etc.,

where α could certainly denote an arbitrary other value than in the first. If we
now divide the last series by the first, hence the following series will result

a
c

,
a(a + b)
c(c + b)

,
a(a + b)(a + 2b)
c(c + b)(c + 2b)

,
a(a + b)(a + 2b)(a + 3b)
c(c + b)(c + 2b)(c + 3b)

etc.

and it is obvious that the term corresponding to the index n will be ∆:n
Γ:n ,

whence, if in both we take the same number for α, the powers of the exponent
n will all cancel each other so that for this series the general term or the one
corresponding to the index n is

=
a(c + nb)
(a + nb)c

· (a + b)(c + (n + 1)b)
(a + (n + 1)b)(c + b)

· (a + 2b)(c + (n + 2)b)
(a + (n + 2)b)(c + 2b)

· etc.

where therefore the interpolation is possible without any difficulty, Yes, one
will even in general be able to express this general term by means of the
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fraction P
Q conveniently, by taking q = a, p = c, m = nb so that the successive

increment, which was n, is b now, whence the two integral formulas will be

P =
∫ xc−1∂x

(1− xb)1−n and Q =
∫ xa−1∂x

(1− xb)1−n ;

and so it will always be possible to express the general term by means of two
integral formulas in these cases and hence in a finite and determined way
and the interpolation does not require new quadratures, as it happened in the
cases treated above.
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